## Year 2 - Mathematics Intent

| Block | Topic | Term | Number of Weeks | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Number and Place Value |  |  |  |
| 2 | Addition and Subtraction |  |  |  |
| 3 | Money |  |  |  |
| 4 | Multiplication and Division |  |  |  |
| 5 | Fractions |  |  |  |
| 6 | Geometry - Properties of Shape |  |  |  |
| 7 | Measure - Time |  |  |  |
| 8 | Statistics |  |  |  |
| 9 | Geometry - Position and Direction |  |  |  |
| 10 | Measure - Length, Height, Mass, Capacity and Temperature |  |  |  |


| Block 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Number and Place Value |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Count in in tens from any number, forward and backward |  | - Can count forwards in 10 s from any number <br> - Can count backwards in 10s from any number | *Introduction <br> *Read and write numbers to 100 |
| Recognise the place value of each digit in a two-digit number (tens, ones) | 2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning. <br> TAF - Partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus | - Can partition a 2-digit number into tens and ones using structured resources to support them <br> - Can identify the number of tens and ones in a written 2-digit numbers without structured resources | *Recognise Place Value in a 2-digit number <br> *Examine patterns using Place Value \& counting in steps of 10 <br> *Compare and order numbers including relative positions on a number line *Partition numbers into |
| Identify, represent and estimate numbers using different representations, including the number line | 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . <br> TAF - Read scales* in divisions of ones, twos, fives and tens | - Can position 2-digit numbers on a marked number line and reason about where they are positioned | different combinations of tens and ones *Counting in steps of 2,5 and 3 <br> (NB: reflect on which elements of counting in |
| Compare and order numbers from O up to 100; use <, > and = signs |  | - Can create 2-digit numbers using concrete equipment and use to compare by reasoning about the size of numbers <br> - Can compare numbers by identifying their relative positions in the linear number system (number line) <br> - Can position the <, > and = signs correctly between two 2-digit numbers | different multiples to cover now and which to cover in the multiplication and division unit) |

## Year 2 - Mathematics Intent

| Read and write <br> numbers to at least <br> 100 in numerals and <br> in words |  | • Can read numbers from 1-100 in numerals <br> - Can write numbers from 1-100 in words |
| :--- | :--- | :--- |
| Use place value and <br> number facts to <br> solve problems. |  | - Can use coins to make given amounts of <br> money, applying place value <br> - Can solve problems linked to place value |


| Block 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| Addition and Subtraction |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 | 2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice. <br> TAF - Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then $17-3$ $=14$; leading to if $14+3=17$, then $3+14=17,17-14=3$ and $17-3=14$ ) | - Can relate number facts to 10 to adding and subtracting multiples of 10 within 100 <br> - Can recall and use addition and subtraction facts to 20 fluently; derive and use related facts to 100 <br> - Can solve missing box and missing symbol calculations | *Add and subtract within 10 *Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot |
| Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: <br> - A two-digit number and ones <br> - A two-digit number and tens <br> - Two two-digit numbers <br> - Adding three onedigit numbers | 2AS-1 Add and subtract across 10 <br> 2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. <br> 2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers. <br> 2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". <br> TAF - Add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$ ) | - Can add and subtract numbers mentally, including: <br> - a 2-digit number and 1 s <br> - a 2-digit number and 10 s <br> - 2 simple, 2-digit numbers, which do not involve bridging a 10 <br> - adding 3 single-digit numbers <br> - Can add and subtract two 2-digit numbers that bridge a multiple of 10 using jottings or a series of related number sentences to avoid overload of working memory <br> - Can use concrete apparatus or pictorial representations to demonstrate how they have calculated an answer. | * Understand that equations need to be balanced and an equation can have an expression on both sides. <br> *Compare expressions with > < and = symbols <br> * Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems *Recall and use addition and subtractions facts within and to 20 |


| Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot | TAF - Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then 17 $-3=14$; leading to if $14+3=17$, then $3+14=17$, $17-$ $14=3$ and $17-3=14$ ) | - Can show that addition can be done in any order (commutative) <br> - Can show that subtraction can't be done in any order | *Derive and use addition and subtraction facts to 100 <br> *Consolidate adding two 1-digit numbers crossing the tens boundary <br> *Consolidate |
| :---: | :---: | :---: | :---: |
| Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. |  | - Can recognise and use the inverse relationship between addition and subtraction <br> - Can check calculations using the inverse operation | subtracting a 1-digit number from a teen number crossing the tens boundary <br> *Adding three 1-digit numbers (odd \& even) <br> *Add a 2-digit number and ones <br> *Add a 2-digit number |
| Solve problems with addition and subtraction: <br> Using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods |  | - Solve one-step addition problems using mental strategies <br> - Solve one-step subtraction problems using mental strategies <br> - Solve one-step addition problems using a written method in line with school calculation policy e.g. counting on a number line, partitioning <br> - Solve one-step subtraction problems using a written method in line with school calculation policy e.g. counting back on a number line, partitioning <br> - Understand when a word problem involves addition or subtraction | and tens <br> *Add two 2-digit numbers (no bridging, with bridging, adjusting \& compensating) <br> *Subtract a 1-digit number from a 2-digit number <br> * Subtract tens from a 2-digit number <br> * Subtract two 2-digit numbers (no bridging, bridging, adjusting \& compensating) *Use finding the difference to solve comparative problems *Solve word problems |


| Block 3 |  |  |  |
| :---: | :---: | :---: | :---: |
| Money |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Recognise and use symbols for pounds ( $£$ ) and pence (p); combine amounts to make a particular value | No specific Ready to Progress statements for Money but use the opportunity to consolidate prior statements as appropriate e.g 2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning. 2AS-1 Add and subtract across 10. 2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". <br> TAF - Use different coins to make the same amount | - Can record using symbols $£$ and $p$ (separately, depending on the unit being used) <br> - Can add together different coins and find the total Can find coins that make a particular amount e.g. Which coins could you use to make 20p? | *Recognise coins and notes (recap year 1) <br> * Combine amounts to make a particular value <br> * Find total value of groups of coins and notes and record |
| Find different combinations of coins that equal the same amounts of money |  | - Can say how many different combinations of coins can you use to make a given total e.g. 20p | (separately, depending on the unit being used) <br> * Find different combinations of coins that equal the same amount of money |
| Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change |  | - Can find totals of different amounts of money <br> - Can decide which coins could be used to pay for the total <br> - Can solve subtraction problems such as Jess has saved 62p. She spends 15p. How much does she have left? <br> - Can find change from a given amount e.g. Jess buys a banana for 23p. She pays for it using a 50p. How much change does she get? | * Solve simple problems in a practical context involving addition of money <br> * Solve simple problems in a practical context involving change <br> * Solve simple problems in a practical context involving subtraction of money (other than change) <br> *Consolidation, reasoning and problem solving |

## Year 2 - Mathematics Intent

| Block 4 |  |  |  |
| :---: | :---: | :---: | :---: |
| Multiplication and Division |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward |  | - Can count in $2 \mathrm{~s}, 5$ s and 10 s from 0 <br> - Can count forwards and backwards in 10 s from any number <br> - Can count forwards and backwards in 5 s from any number <br> - Can count forwards and backwards in 2 s from any number <br> - Can count in 3 s from 0 | *Understand and use the language of equal groups *Link equal groups to repeated addition <br> *Link equal groups to multiplication sentences with x sign <br> *Recall and use multiplication |
| Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers | TAF - Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary | - Can use concrete objects to show understanding of multiplication <br> - Can recall the $10 x$ table in a random order <br> - Can recall the $2 x$ table in a random order <br> - Can recall the $5 x$ table in a random order <br> - Can recognise odd and even numbers | facts from the $2 x$ table <br> *Recall and use multiplication facts from the $5 x$ table *Recall and use multiplication facts from the 10x table *Recall and use facts from the $2 x, 5 x$ and $10 x$ tables to reason about patterns between times table facts and to problem solve |
| Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication ( x ), division ( $\div$ ) and equals (=) signs | 2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. <br> 2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotative division). | - Can write addition sentences as multiplication sentences and vice versa <br> - Can when shown an array, write the 4 addition and multiplication sentences that the image represents and 2 division facts | * Understand and write repeated addition sentences as multiplication sentences with $x$ sign and vice versa *Use an array to show that multiplication can be done in any order (commutative law) * Derive Division facts using division by grouping and record using the $\div$ sign |


| Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot | TAF - Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary | - Can use an array to explain the commutative law e.g. Why $2 \times 5$ is the same as $5 \times 2$ ? <br> - Can use an array to record the 2 division sentences that can be made from the image <br> - Can explain why a division calculation cannot be done in any order e.g. Why is $2 \div 10$ not 5 ? | *Revise division by sharing from Y1 and compare to the grouping method <br> *When shown an array can record <br> - 2 repeated addition sentences <br> - 2 multiplication sentences <br> -2 division sentences <br> *Can explain why a division |
| :---: | :---: | :---: | :---: |
| Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts | 2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotative division). <br> TAF - Recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary | - Can use materials, arrays, repeated addition, mental methods, and multiplication and division facts to solve multiplication word problems in context <br> - Can use materials, arrays, mental methods, and multiplication and division facts to solve sharing word problems in context <br> - Can use materials, arrays, mental methods, and multiplication and division facts to solve grouping word problems in context <br> - Can use materials, arrays, repeated addition, mental methods, and multiplication and division facts to solve multi-step problems involving multiplication and division in context | calculation cannot be done in any order e.g. Why is $2 \div 10$ not 5 ? <br> *Investigating the inverse <br> *Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts <br> * Consolidation and Problem Solving |


| Block 5 |  |  |  |
| :---: | :---: | :---: | :---: |
| Fractions |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$ of a length, shape, set of objects or quantity | TAF - Identify $\frac{1}{4^{\prime}}, \frac{1}{3^{\prime}}, \frac{1}{2^{\prime}}$ $\frac{2}{4} \frac{3}{4}$ of a number or shape, and know that all parts must be equal parts of the whole | - Can find unit fractions $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}$ of lengths, shapes or quantities by splitting into equal parts. <br> - Can find non-unit fractions $\frac{2}{3}, \frac{2}{4}, \frac{3}{4}$ of lengths, shapes or quantities by selecting more than one part after splitting equally <br> - Can find unit fractions $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}$ of a set of objects by splitting into equal groups and make links to division <br> - Can find non-unit fractions $\frac{2}{3}, \frac{2}{4}, \frac{3}{4}$ of a set of objects by splitting equally then totalling the number of groups identified by looking at the numerator | *Introduction using real life contexts <br> *Use concrete materials and pictorial representations to explore and recognise that the denominator is the number of equal parts into which a whole has been split <br> *Name fractions one half, one third and one quarter and use the correct notation *Recognise that one 'whole' could be one whole group of items <br> *Write number sentences which represent the fractions of amounts being calculated e.g. $\frac{1}{2}$ of $8=4$ or $\frac{1}{4}$ of $8=2$ |
| Write simple fractions for example, $\frac{1}{2}$ of $6=3$ |  | - Can record fractions in writing and understand what each part represents <br> - Can use a fraction as an operator on a number and record as a number sentence <br> - Can calculate by dividing the number by the denominator and multiplying by the numerator | *Recognise $\frac{2}{3}, \frac{2}{4}$ and $\frac{3}{4}$ of an object, shape or length <br> *Recognise $\frac{2}{3^{\prime}} \frac{2}{4}$ and $\frac{3}{4}$ of a quantity <br> *Comparing fractions - Recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$ <br> *Count on and back in steps of $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{3}$ <br> *Consolidation and substantial problem |
| Recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$ |  | - Count in fractions up to 10 and place on a number line <br> - Use a number line to show that $1 / 2$ is equivalent to $\frac{2}{4}$ <br> - Reason about the equivalence of $\frac{1}{2}$ and $\frac{2}{4}$ using objects or images |  |


| Block 6 |  |  |  |
| :---: | :---: | :---: | :---: |
| Geometry - Properties of Shape |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Identify and describe the properties of 2-D shapes, including the number of sides and lines symmetry in a vertical line | 2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties <br> TAF - Name and describe properties of 2D and 3-D shapes, including number of | - Can identify the number of sides on a range of 2D shapes <br> - Can identify the number of vertices on a range of 2D shapes <br> - Can define a polygon as a shape with straight sides and identify whether a 2D shape is a polygon or not <br> - Can identify shapes by counting the number of sides or vertices including knowing quadrilateral as the generic term for a 4-sided shape <br> - Recognises irregular shapes and can reason about this e.g. knows that every 5 sided polygon is a pentagon. <br> - Can distinguish a square and a rectangle as special quadrilaterals and explain which properties define them <br> - Can identify lines of symmetry on 2-D shapes | * Introduction and recap of shape work from year 1 <br> * Name and describe properties of 2D shapes including sorting by those properties <br> * Lines of symmetry <br> * Name and describe properties of 3D shapes |
| Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces | faces and lines of symmetry. | - Can recognise and name 3-D shapes, including cuboids, prisms and cones <br> - Can describe the properties of 3-D shapes, including number of faces, edges and vertices | those properties and identifying 2Dshapes as faces on 3D shapes |
| Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] |  | Can identify 2-D shapes on the surface of a 3-D shape, including: <br> - A triangle on a pyramid <br> - A square on a cube <br> - A rectangle on a cuboid <br> - A circle on a cylinder and cone <br> - A triangle and rectangle on a triangular prism | *Consolidation with further sorting and problem solving |
| Compare and sort common 2-D and 3-D shapes and everyday objects. |  | - Can sort and classify 2-D and 3-D shapes and everyday objects using a Venn diagram, according to their properties <br> - Can sort and classify 2-D and 3-D shapes and everyday objects using a Carroll diagram |  |


| Block 7 |  |  |  |
| :---: | :---: | :---: | :---: |
| Measure - Time |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Compare and sequence intervals of time |  | - Can describe intervals of time in days <br> - Can state the difference between time in days. <br> - Can measure accurately in hours, seconds and minutes <br> - Can add and subtract intervals to times on clocks | *Introduction \& recap of analogue clocks from Y1 <br> *Understand the term clockwise <br> *o'clock \& half past with just the hour hand <br> *Quarter past \& quarter to with just <br> the hour hand <br> *o'clock half past, quarter past and |
| Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times | TAF - Read the time on a clock to the nearest 15 minutes | - Can tell the time to quarter past the hour <br> - Can tell the time to quarter to the hour <br> - Can tell the time to the nearest 5 minutes | quarter to with just the minute hand (Measuring in fractions of an hour) <br> *Telling the time on an analogue clock with both hands to the nearest 15 minutes (TAF expected) <br> *Telling the time on an analogue clock with both hands to the nearest 5 minutes (NC objective) |
| Know the number of minutes in an hour and the number of hours in a day |  | - Know that there are 60 minutes in an hour <br> - Know that there are 24 hours in a day | *Know the number of minutes in an hour <br> *Know the number of hours in a day <br> *Compare and sequence units of time <br> *Link telling the time with time durations <br> *Compare and sequence intervals of time |


| Block 8 |  |  |  |
| :---: | :---: | :---: | :---: |
| Statistics |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Interpret and construct simple pictograms, tally charts, block diagrams and simple tables | 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . <br> TAF - Read scales* in divisions of ones, twos, fives and tens | - Can generate data in everyday situations e.g. How many children eat dinner or packed lunch? <br> - Can present data in different ways using a scale of $1,2,5$ or 10 <br> - Can answer retrieval questions from the charts and graphs that they are working with | *Introduction - key vocab <br> * Interpret and construct simple tally charts and ask and answer questions about the data <br> *Interpret and construct simple tables and ask and answer questions about the |
| Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity |  | - Can answer questions about the data that they have collected using scales of $1,2,5$ and 10 e.g. which is the most popular chocolate bar when a full chocolate bar represents 2 people on a pictogram? | data <br> *Interpret and construct simple pictograms and ask and answer questions about the data |
| Ask and answer questions about totalling and comparing categorical data. | 2AS-1 Add and subtract across 10 <br> 2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". | - Can find the total of two categories on a pictogram, tally, block diagram and simple table <br> - Can find the difference between two categories on a pictogram, tally, block diagram and simple table to answer How many more...? How many fewer...? questions | *Interpret and construct simple block diagrams and ask and answer questions about the data *Consolidation - ask and answer questions about a variety of different representations |


| Block 9 |  |  |  |
| :---: | :---: | :---: | :---: |
| Geometry - Position and Direction |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Order and arrange combinations of mathematical objects in patterns and sequences |  | - Can continue and create patterns of shapes, including those in different orientations. <br> - Can identify the unit of repeat | *Describe position (in, on, under, in front of, behind, in between, next to, on the left of, on the right of, above, below) |
| Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti-clockwise). |  | - Confidently uses and understands terms, forwards, backwards, left and right, up and down to describe routes on a grid <br> - Can recognise when an image has been rotated a whole, half, quarter or three-quarter turn <br> - Can rotate themselves or an object clockwise or ant-clockwise <br> - Can program robots using instructions given in right angles | *Describe direction and movement without turns (forwards, backwards, left, right, up, down) <br> *Describe rotation as turns (whole, half quarter and three quarter turns clockwise and anticlockwise) <br> *Describe rotation in terms of right angles <br> *Describe direction and movement including using a range of vocabulary to describe turns <br> *Order and arrange combinations of mathematical objects in patterns and sequences |


| Block 10 |  |  |  |
| :---: | :---: | :---: | :---: |
| Measures - Length, Height, Mass, Capacity \& temperature |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress <br> Expected TAF Statements | Key Performance Indicators | Sequence of learning Detailed in Planning Overview |
| Choose and use appropriate standard units to estimate and measure length/height in any direction ( $\mathrm{m} / \mathrm{cm}$ ); mass (kg/g); temperature ( ${ }^{\circ} \mathrm{C}$ ); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels | 2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . <br> TAF - Read scales* in divisions of ones, twos, fives and tens | - Can make sensible estimations in relation to all areas of measure <br> - Can measure accurately in centimetres and metres using rulers and metre sticks <br> - Can record measures using correct abbreviations cm and $m$ <br> - Can measure accurately in grams and kilograms using measuring scales <br> - Can record measures using correct abbreviations g and kg <br> - Can measure accurately in millilitres and litres using measuring vessels <br> - Can record measures using correct abbreviations ml and I <br> - Can measure accurately in degrees Celsius <br> - Can record measures using correct abbreviations ${ }^{\circ} \mathrm{C}$ <br> - Can measure accurately in hours, seconds and minutes <br> - Can decide the correct unit of measure to use in a given situation e.g. What unit of measure would we use to measure the mass of an apple? <br> - Can decide on the appropriate measuring tool to use in a given situation e.g. what would you use to see how much water is in this cup? | *Introduction - choosing sensible units and equipment *Number lines recap *Choose and use appropriate standard units to estimate and measure length /height in any direction ( $\mathrm{m} / \mathrm{cm}$ ) to the nearest appropriate unit, using rulers *Compare and order lengths *Choose and use appropriate standard units to estimate and measure capacity (litres/ml) to the nearest appropriate unit, using measuring vessels <br> *Compare and order volume/capacity *Choose and use appropriate standard units to estimate and measure mass ( $\mathrm{kg} / \mathrm{g}$ ) using scales *Compare and order mass <br> *Choose and use appropriate standard units to estimate and measure temperature $\left({ }^{\circ} \mathrm{C}\right)$ to the nearest appropriate unit, using |
| Compare and order lengths, mass, volume/capacity and record the results using >, < and = |  | - Can compare and order different units of measure <br> - Can use ? and = to record comparisons | thermometers <br> *Compare and order temperature <br> *Solve problems with addition and subtraction |


|  |  |  | using concrete objects and pictorial <br> representations, including those <br> involving numbers, quantities and <br> measures <br> *Solve problems involving |
| :--- | :--- | :--- | :--- |
| multiplication and division, using |  |  |  |
| materials, arrays, repeated addition, |  |  |  |
| mental methods, and multiplication |  |  |  |
| and division facts, including problems |  |  |  |
| in contexts |  |  |  |

